
research note
Computer and Computational Sciences

CCS–4:Transport Methods Group

To/MS: Distribution
From/MS: Todd Urbatsch, CCS–4, MS D409;

Tom Evans, CCS–4, MS D409;
Mike Buksas, CCS–4, MS D409

Phone/FAX: (505)667–3513, 665–3677, 667–7580
Symbol: CCS–4:02-13(U) (LA-UR-02-3213)

Date: May 28, 2002

Subject: Release Notification: MILAGRO–3 0 0: Multigroup

Executive Summary

We wish to announce the release of version 3 0 0 of Milagro, the parallel, multi-dimensional,
multi-geometry, stand-alone Implicit Monte Carlo code for thermal radiative transfer. This
release of Milagro has a multigroup frequency treatment. The multigroup opacities are either
input as analytic models or read from IPCRESS opacity files. In this note we briefly describe
the capability, assumptions, algorithms, software design, input details, and the results from
verification test problems.

1. Introduction

We have introduced a multigroup frequency capability in the Milagro Implicit Monte Carlo (IMC)
code [1–6]. This capability represents additional functionality beyond the gray frequency treatment
in all prior versions.

We describe the assumptions built into Milagro’s multigroup frequency treatment, the algorithms
used for frequency integration, and the schemes for sampling a particle’s frequency group.

We also describe the new C++ techniques we devised. These techniques allowed us to retain the gray
capability alongside the new multigroup capability without sacrificing speed or safety and without
adding redundant coding.

The additional input necessary to run the multigroup Milagro executable is presented. In particular,
we explain how to run Milagro with user-input analytic opacities or with data (real or analytic)
from an IPCRESS [7] opacity file.

The multigroup capability has been tested and verified to be correct with a myriad of component
tests, degenerate consistency tests, and analytic benchmarks.

2. Assumptions

In our multigroup frequency treatment, we have made certain assumptions about frequency distri-
butions, the spatial dependence of the frequency distributions, and the range of frequency integra-
tions.
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2.1. Sampled Spectrum of Emission Particles

In the Fleck and Cummings IMC method [8], the time-explicit portion of the volume emission source
is emitted according to the temperature of the cell. A flat spatial dependence of the temperature
within a cell produces unacceptable spatial inaccuracies, thus necessitating a first- or higher-order
treatment of the spatial dependence of temperature within a cell [9]. In Milagro, the position of a
volume emission source is sampled according to a linear function of T 4 within each cell. Therefore,
more particles are sampled from the hotter side of the cell.

Milagro’s multigroup treatment does not apply the in-cell spatial dependence of temperature to the
frequency sampling. The frequency of each volume emission particle in a cell is sampled according
to the average temperature of the cell. So, the particles sampled from the hot side of cell have the
same frequency distribution as those sampled from the cold side of a cell.

2.2. Assumed Planckian Distributions

Milagro assumes a Planckian spectral shape for its sources. In Milagro’s multigroup frequency treat-
ment, particles due to volume emission and the time-implicit portion of an external material source
have frequencies that are sampled from a discrete, opacity–weighted Planckian distribution [8]. The
surface source is assumed to come from a blackbody at Tss, so, naturally and rigorously, surface
source particles are sampled from a straight Planckian at that temperature. The frequencies of the
initial census particles are sampled from a Planckian at the initial radiation temperature in each
cell. (Initial census particles are sampled uniformly in space.)

Finally, since there is no temperature associated with a radiation source, the frequency of particles
due to an external radiation source is sampled from a Planckian distribution evaluated at the
material temperature. Thus, the radiation source has built-in assumptions of local thermodynamic
equilibrium (LTE). Future Milagro improvements may include a user-specified frequency dependence
of the radiation source.

2.3. Frequency Limits of Planckian Integrals

The calculations of source energies involve integrals over the range of frequencies considered. In a
gray treatment, the normalized Planckian function is already integrated from 0 to ∞ to produce a
value of unity. In a multigroup frequency treatment, the total integral of the normalized Planckian
extends over a range less than (0,∞) and will be less than unity. Poorly chosen upper and lower
frequency bounds could have the following consequences:

• the spectrum and corresponding energy in parts of phase space will go unsampled,

• inability to sample a frequency when the Planckian functions are outside the upper or lower
frequency, e.g., a cold cell when the lower group bound is too high,

• the frequency limits may not allow a consistent conversion between energy and temperature.
For example, the energy rates input for external sources may have been ascertained with
frequency limits different than what the calculation is actually using.
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We also note that whenever a radiation temperature is output from Milagro, it is a quantity derived
from the radiation energy density assuming a Planckian shape integrated over all frequencies from
0 to ∞, i.e., Er = aT 4

r .

3. Algorithms

3.1. Brad Clark’s Finite Planckian Integrals

We have incorporated static functions in the Common Data Interface (CDI) package [7, 10] to
integrate the normalized Planckian function between two frequencies. These functions use the
algorithms developed by Bradley A. Clark [11,12]. Clark’s algorithm can have any desired accuracy.
It is an improvement over Zimmerman’s rational polynomial fit [11] that is used by earlier IMC
efforts at LANL.

Calculating IMC source energies requires integrals of the Planckian over the entire frequency range.
Planckian integrals are also required for each individual frequency group for the emission cumulative
distribution function (cdf), which is an opacity–weighted Planckian.

3.2. Multigroup Source Energy Calculations

In a gray calculation, the equations are integrated over the frequency range (0,∞). Given that the
sources in Milagro have an assumed Planckian spectrum, the source energies in a gray frequency
treatment contain the integral of the Planckian over all frequencies from 0 to ∞, the value of which
is acT 4. The common practice is to represent the Planckian in terms of the normalized Planckian,
bν(T ),

Bν(T ) = acT 4 bν(T ) , (1)

where bν(T ) is non-negative and the integral of bν(T ) from ν = 0 to ∞ is unity. For G groups, a
minimum group boundary of ν0 > 0, and a maximum group boundary of νG < ∞, the full integral
of bν(T ) is less than one.

Thus, we find that the multigroup source energies are merely scaled values of the gray source
energies. For purely Planckian sources, such as a surface source, the multigroup source energy
contains the following integral:

∫ νG

ν0

Bν(T ) dν = acT 4

∫ νG

ν0

bν(T ) dν , (2)

where the integral of the normalized Planckian is evaluated using Clark’s algorithm.

For an emission or re-emission source, the energy is proportional to the integral of the opacity–
weighted Planckian distribution. Given a piece-wise constant multigroup opacity, σg, where g ∈
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[1, G], we evaluate the integral in the following manner:
∫ νG

ν0

σBν(T ) dν =
G∑

g=1

∫ νg

νg−1

σBν(T ) dν (3)

=
G∑

g=1

σg

∫ νg

νg−1

Bν(T ) dν (4)

= acT 4
G∑

g=1

σgbg , (5)

where
bg =

∫ νg

νg−1

bν(T ) dν . (6)

Again, Clark’s algorithm is used to evaluate bg.

3.3. Sampling a Frequency Group

At this time, Milagro is purely multigroup since its frequency variable is truly discrete. The particles
only have a group number, not an explicit frequency. With future introductions of such physics as
Compton scattering and a material motion treatment, Milagro will require a within-group frequency
treatment such that each particle will have both an explicit frequency and group.

3.3.1. Sampling a Group from a Planckian. For sampling a frequency group from a pure Planckian
distribution, we chose an algorithm by taking into consideration Milagro’s future requirements of
continuous within-group frequencies. First, we sample a frequency from a continuous Planckian
distribution, then we determine the group in which the sampled frequency resides. (An alternative
for sampling a group only is to construct and sample from a discrete cumulative distribution function
(cdf) equal to the running sum of bg for g = 1, ..., G.)

To sample a frequency from the continuous Planck distribution, we use Barnett and Canfield’s
truncated infinite series technique [13] . They begin by writing the normalized Planckian, b(x) =
(15/π4)x3/(ex−1), as

∑∞
n=1 pnfn(x), where x = hν/(kT ) is the reduced frequency, pn = 90/(π4n4),

fn(x) = (n4/6)x3e−nx, and
∑∞

n=1 pn = 1. Thus, with probability pn we can sample fn(x) for
x. Sampling n from pn requires satisfying (π4/90)ξ ≤ ∑n

k=1 1/k4, where ξ is a random number
between 0 and 1. The search usually only requires one iteration (i.e., n = 1), but the search can
be unbounded. The search is bounded by truncating (rounding down) the decimal representation
of π4/90 = 1.0823232337.... The maximum number of iterations for a given truncation is shown in
Table 1. A large number of iterations, n, usually corresponds to a small frequency, so the concern
over significant digits is largely moot. However, given that the maximum number of iterations is
rarely encountered, the computational cost is not excessive (but the expenditure of random numbers
might get wasteful). Milagro currently has 8 significant digits in its value for π4/90.

Once n is found, four random numbers are used to sample x from fn(x) according to the procedure
in Everett and Cashwell’s “A Third Monte Carlo Sampler” [14]:

x = − 1
n

log(ξ1ξ2ξ3ξ4) . (7)
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TABLE 1: Maximum number of iterations for sampling a frequency from a continuous Planckian
distribution for a given number of significant digits in π4/90.

Number of Significant Digits Truncated π4/90 Max iterations
6 1.08232 47
7 1.082323 113
8 1.0823232 215
9 1.08232323 448
10 1.082323233 775
11 1.0823232337 2744

The frequency, then, is hν = x kT .

The sampling procedure was verified with a python script (script, data, and plots are located at
/home/tmonster/methods/imc/multigroup). Figure 1 shows the sampled Planckian for a temper-
ature of 1 keV and 106 particles. Figure 2 shows the relative error in the binned samples.
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FIG. 1: Binned distribution of frequencies sampled from a continuous Planckian distribution at 1
keV.

The group containing the sampled frequency is determined by searching the group boundaries with
a binary search. If the frequency is outside the multigroup boundaries, the frequency is rejected
and resampled. If 100 rejections occur, the code fires an assertion and aborts. Rejections will
occur when, for example, the minimum group bound is too high to capture the Planckian of a cold
temperature.



To Distribution
CCS–4:02-13(U) (LA-UR-02-3213)

–6– May 28, 2002

0 5 10 15 20
Frequency, keV

10
-4

10
-3

10
-2

10
-1

10
0

R
el

at
iv

e 
er

ro
r

Error in Sampled Planckian Frequencies at T=1keV
1 Million Samples, frequency bins = 0.1 keV

FIG. 2: Relative error of sampled and binned Planckian frequencies.

3.3.2. Sampling a Group from an Emission Spectrum. For emission spectra, a particle’s frequency
group must be sampled from the piece-wise constant distribution of σgbg. We store the unnormalized
cumulative distribution function (cdf),

fi =
i∑
1

σgbg (8)

for each cell’s temperature. The cdf is calculated with piece-wise constant opacities and the group-
wise normalized Planckian integrals from Brad Clark’s algorithm.

At this time, we do not further sample a continuous frequency within the sampled group. When
we are required to do so, we may choose from one of many schemes:

• select hν at the midpoint of the group,

• select hν at the logarithmic midpoint of the group,

• sample hν uniformly in the group,

• sample hν linearly in the group,

• sample hν from x3 in low groups; uniformly in middle groups; and from an exponential in
higher groups,

• if possible, sample hν analytically from a Planckian distribution within the group using Clark’s
expansions.
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3.4. Differences Between Running Multigroup and Gray IMC

The user should be aware of a few differences between multigroup and gray IMC. The multigroup
parts of IMC entail a little extra work. The work is such that parallel behavior may be different
than that of gray IMC. Also, the extra frequency dimension affects statistical noise.

3.4.1. Extra Multigroup Work. The multigroup capability in the Milagro IMC code requires extra
work in three areas:

• calculating the emission cdf (opacity-weighted Planckian for each group and each cell)

• sampling a group from a pure Planckian function (surface source, radiation source, and initial
census particles)

• sampling a group from an emission cdf (volume emission and material source particles, and
Fleck and Cummings’ effective scatter)

In most cases, the work required to sample a group will be negligible compared to the rest of the
transport work. Even if an IMC calculation is dominated by effective scatter, the extra sampling
time is negligible because sampling a cdf is very fast (throw a random number, and perform a
binary search for the group).

The calculation of the emission cumulative distribution function (cdf) is performed for each group
and in each cell. This calculation is part of the deterministic source calculation required to run IMC.
If Milagro is run in parallel with a replicated spatial domain, the calculation of the emission cdf
will be replicated on each processor for the entire spatial mesh. Thus, fully replicated multigroup
Milagro effectively has more serial overhead than fully replicated gray Milagro and will not scale as
well. Run-times with increasing number of groups for a 2-processor, domain-replicated calculation
are shown in Fig. 3. The calculation that produced the plots in Fig. 3 had a relatively small amount
of transport work each cycle. Therefore, the small increase in transport work for more groups is
due to the extra sampling, and the larger increase in overall time is due to the extra cdf calculations
in the source.

In the case of domain decomposition for both gray and multigroup Milagro, the parallel efficiency
and scalability depends on the problem.

3.4.2. Statistical Noise. In a gray IMC calculation, the frequency variable is analytically integrated
out. Whenever stochastic parts of a Monte Carlo calculation can be replaced easily with analytic
solutions, statistical noise decreases and overall efficiency increases. Therefore, the user should use
a gray frequency treatment if it is appropriate for the problem.

Running multigroup IMC adds another independent variable—another degree of freedom. An in-
crease in phase space or a refinement in discretized phase space requires more particles to adequately
sample that phase space. It is up to the user to request more IMC particles to adequately sample
the added frequency variable.
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FIG. 3: Parallel efficiency for domain-replicated, multigroup IMC.

4. Software Design

We did not want to throw away the gray capability when we introduced the multigroup capability
to Milagro. We discovered that in order to keep both capabilities and yet have a safe, efficient
code, we needed something that C++ could not give us: partial specialization of member functions
(something most people feel C++ should allow). Therefore, we devised a new approach that allows
partial specialization of member functions and is standard-compliant.

Contrast our approach with the “old” coding practice of littering the code with “if” checks: if
gray, do this, or if multigroup, do something else. “if” checks at such a deep level are dangerous
and inefficient. For example, it would be easy for the gray coding to get called accidentally dur-
ing a multigroup execution. Unnecessary “if” checks do not belong in computationally intensive
components, and they provide a weak compartmentalization between disparate capabilities. Weak
compartmentalization compromises the ability to test components.

We describe how we added multigroup without losing the gray capability.

4.1. Template Parameters

One familiar tactic we have used in Milagro is that we have written the physics classes in a generic
way so that they work with any mesh-type—as long as the mesh-type provides the required services
(e.g., distance-to-boundary, volume, and next cell). This sort of code development allows for code-
reuse, more efficient code execution, and easier testing.
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For upgrading to multigroup, we introduced a new template parameter called “Frequency Type,”
which can be either “Gray Frequency” or “Multigroup Frequency” exclusively. Let us consider as
an example the Planckian source energy calculations discussed above. In those calculations, we
introduced a function called “get integrated norm Planck,” which, besides having a catchy name,
returns hard unity for the Gray Frequency case and

∫ νG

ν0
bν(T ) dν for the Multigroup Frequency

case. Milagro is configured and compiled such that only one of the two cases is ever true.

4.2. Explicit Partial Specializations of Templated Member Functions

As described above, we template physics classes on the Frequency Type. There are two primary
benefits to this model: (1) there are no conditionals littered throughout the code switching between
gray and multigroup physics; (2) the code is highly optimized for both gray and multigroup because
logical execution paths are decided at compile time, not run-time. At this point a fair question
is, “Why use templates instead of inheritance?” The answer is that the physics code components
already support multiple parallel schemes through inheritance. Adding another level for frequency
discretization would have made the inheritance hierarchies multi-level and confusing. Furthermore,
the physics components are already templated on the spatial discretization (Mesh Type); thus,
adding the frequency discretization as a template parameter gives the code an attractive consistency
and symmetry.

The negative associated with this choice is that there is no real concept associated with the
Frequency Type (FT). For example, the Mesh Type concept defines a certain set of services that all
meshes must provide, distance-to-boundary and so forth. There is no corresponding set of services
that all Frequency Types must define. In fact, the Gray Frequency and Multigroup Frequency,
define orthogonal sets of operations. This leads to a template specialization model. In the spe-
cialization model, an implementation of a template class is explicitly provided for each (but not
necessarily all) template arguments. When a template specialization depends only on one of mul-
tiple template arguments, the result is called a partial template specialization.

The template specialization model works very well for classes that are fundamentally different for
each specialization. For example, the specializations of Opacity<FT> with Gray Frequency and
Multigroup Frequency will be totally different. They will have different member data and different
implementations of member functions. In this case, nothing special is required and the C++ class
template specialization model works well.

However, there are cases where the majority of the class will be the same for either template
argument. In this case it is a waste of effort to make two versions of the class, the majority of which
is the same, for the small percentage that is different. More than wasted effort, replicating code
that performs identical operations for identical reasons is inherently dangerous from a maintenance
standpoint. One could design “helper” classes that perform the common operations. The danger
with this choice is that there is no simple mechanism to prevent users from grabbing these helper
classes and utilizing them in undefined and undesirable ways1. Unfortunately, C++ does not allow
partial specialization of member functions. However, we can use overloading combined with partial
ordering to devise a solution [15].

1One could be protected by using a combination of friendship and private static functions. This still leads to a
somewhat cumbersome solution.



To Distribution
CCS–4:02-13(U) (LA-UR-02-3213)

–10– May 28, 2002

Consider the Flat Mat State Builder class from the Draco imc package.

template<class MT, class FT>

class Flat_Mat_State_Builder

: public Mat_State_Builder<MT,FT>

{

public:

// Useful typedefs.

typedef rtt_dsxx::SP<MT> SP_Mesh;

typedef rtt_dsxx::SP<Mat_State<MT> > SP_Mat_State;

typedef rtt_dsxx::SP<FT> SP_Frequency;

typedef rtt_dsxx::SP<Opacity<MT,FT> > SP_Opacity;

typedef std::vector<double> sf_double;

typedef std::vector<sf_double> vf_double;

typedef rtt_imc::global::Type_Switch<Gray_Frequency> Switch_Gray;

typedef rtt_imc::global::Type_Switch<Multigroup_Frequency> Switch_MG;

typedef rtt_dsxx::SP<Flat_Data_Container> SP_Flat_Data;

typedef rtt_dsxx::SP<Opacity<MT,Gray_Frequency> > SP_Gray_Opacity;

typedef rtt_dsxx::SP<Opacity<MT,Multigroup_Frequency> > SP_MG_Opacity;

typedef rtt_dsxx::SP<Gray_Frequency> SP_Gray;

typedef rtt_dsxx::SP<Multigroup_Frequency> SP_MG;

private:

// Flat, cell-centered data fields received from the interface.

SP_Flat_Data flat_data;

// Densities in g/cc.

sf_double density;

// Material temperatures in keV.

sf_double temperature;

// Fleck and Cummings implicitness factor.

double implicitness;

// Timestep in shakes.

double delta_t;

private:

// >>> PARTIAL SPECIALIZATIONS ON FREQUENCY TYPE

// Build a Gray_Frequency.

template<class Stop_Explicit_Instantiation>

rtt_dsxx::SP<Gray_Frequency> build_frequency(Switch_Gray);

// Build a Multigroup_Frequency

template<class Stop_Explicit_Instantiation>

rtt_dsxx::SP<Multigroup_Frequency> build_frequency(Switch_MG);

// Build an Opacity<MT,Gray_Frequency>

template<class Stop_Explicit_Instantiation>

SP_Gray_Opacity build_opacity(Switch_Gray, SP_Mesh, SP_Gray, SP_Mat_State);

// Build an Opacity<MT,Multigroup_Frequency>

template<class Stop_Explicit_Instantiation>

SP_MG_Opacity build_opacity(Switch_MG, SP_Mesh, SP_MG, SP_Mat_State);

public:

// Constructor.

template<class IT>
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explicit Flat_Mat_State_Builder(rtt_dsxx::SP<IT>);

// >>> PUBLIC INTERFACE

// Build the frequency.

SP_Frequency build_Frequency();

// Build the Mat_State.

SP_Mat_State build_Mat_State(SP_Mesh);

// Build the Opacity.

SP_Opacity build_Opacity(SP_Mesh, SP_Frequency, SP_Mat_State);

};

In this class, all of the member data is identical whether the Frequency Type is gray or multigroup.
In fact, the only member functions that require specialization on the Frequency Type are

SP_Frequency build_Frequency();
SP_Opacity build_Opacity(SP_Mesh, SP_Frequency, SP_Mat_State);

As stated above, we cannot implement partial specializations of these functions in the following
manner:

template<class MT>
SP<Gray_Frequency> build_Frequency() {/*...*/}
template<class MT>
SP<Multigroup_Frequency> build_Frequency() {/*...*/}

What we can do is apply overloading with partial ordering to perform the equivalent task2. The
first step is to provide a method of dispatching the Frequency Type as a function argument in a
lightweight way. This is accomplished with the following helper class:

template<class T>
struct Type_Switch
{

typedef T Type;
};

Using this type as an argument, we can define the following private overloaded functions to build
the frequency,

typedef Type_Switch<Gray_Frequency> Switch_Gray;
typedef Type_Switch<Multigroup_Frequency> Switch_MG;

// Build a Gray_Frequency.

2This is an ANSI-compliant technique, see Sec. 14.5 of the C++ Standard [16]
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template<class Stop_Explicit_Instantiation>
SP<Gray_Frequency> build_frequency(Switch_Gray);

// Build a Multigroup_Frequency
template<class Stop_Explicit_Instantiation>
SP<Multigroup_Frequency> build_frequency(Switch_MG);

We can now implement the build Frequency member function in a type-safe, generic way:

template<class MT, class FT>
typename Flat_Mat_State_Builder<MT,FT>::SP_Frequency
Flat_Mat_State_Builder<MT,FT>::build_Frequency()
{

Check (flat_data);

// return frequency
SP_Frequency frequency;

// build the frequency, specialize on the frequency type
frequency = build_frequency<Type_Switch<FT>::Type>(Type_Switch<FT>());

Ensure (frequency);
return frequency;

}

The public interface is unchanged, as it should be. Additionally, the appropriate “specialization” on
Frequency Type is instantiated and called, resulting in the correct frequency being built. The func-
tions that implement the specializations are private members and, thus, cannot be inappropriately
called by client code.

The careful reader may have noticed that there is an additional template argument in these func-
tions. The additional template argument, Stop Explicit Instantiation, stops explicit instanti-
ations from building overloaded functions on incompatible types. The dispatching technique works
because the C++ automatic template instantiation mechanism only instantiates function templates
that are used. However, if we write explicit template declarations like the following:

template class Flat_Mat_State_Builder<OS_Mesh, Gray_Frequency>;

then, by definition, all template members will be instantiated. In this case, the overloaded functions
on Switch MG would be needlessly instantiated. This causes two potential problems: (1) functions
that cannot be used are instantiated causing code bloat, (2) compiler errors could result if the
specialized template argument tries to execute services that are not defined in a given specialization.
To prevent an explicit specialization declaration from instantiating the overloaded functions, we
add a “dummy” template argument. Thus, we get exactly the desired behavior, which is that
only overloaded functions using the specified template argument are instantiated by the compiler.
While the dispatch technique for partial instantiation is described in Ref. [15], the use of an extra



To Distribution
CCS–4:02-13(U) (LA-UR-02-3213)

–13– May 28, 2002

template parameter to prevent explicit instantiation is believed unique to this project.

5. Milagro Multigroup Input

We describe the multigroup modifications to Milagro’s input. The basic Milagro input is fully
described in the Milagro-2 0 0 release note [6]. The Milagro input is not backward compatible
because of the significant changes.

5.1. Frequency Group Definition

In the material block of the input for a multigroup calculation (with, e.g., the executable mila-
gro xyz mg), the user must now specify the number of groups and the group bounds, in keV:

num_groups: 3
group_bounds: 0.0 0.2 3.0 100.0

The group boundaries and number of groups only need to be defined when using analytic opacities
or when using a combination of IPCRESS and analytic opacities.

5.2. Analytic Opacities

For analytic opacities, the user must input the number of opacities, the number of opacity models,
and the opacity models (constant or polynomial), as in the following example for a 1/T 3 absorption
opacity and a constant zero scattering opacity. Note that, for analytic opacities, the opacity
definition must contain the phrase “model,” a key stating whether it is absorption or scattering,
and the model number (indexed beginning with 1) for each group.

num_opacities: 2
num_opacity_models: 2

c opacity models (cm^2/g): constant or polynomial.
c constant: specify a
c polynomial: specify a,b,c,d in (a + bT^c) * (rho)^d
opacity_model: 1 polynomial 0.0 1.0 -3.0 0.0
opacity_model: 2 constant 0.0

c opacities
opacity: 1 model absorption 1 1 1
opacity: 2 model scattering 2 2 2

5.3. Opacities from an IPCRESS File

Milagro also reads opacity data from an IPCRESS opacity file [7]. Instead of defining an opacity
model, the user must specify the IPCRESS opacity filename, whether it is absorption or scattering,
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whether it is “planck” or “rosseland,” and the material ID number in the file. The following
example uses the rosseland opacity from material 19000 for the absorption opacity and an analytic
zero scattering opacity.

num_groups: 3
num_opacities: 2
num_opacity_models: 1
group_bounds: 1.0e-10 0.2 3.0 100.0

c models: constant or polynomial
opacity_model: 1 constant 0.0

c absorption opacities from a Gandolf opacity file
opacity: 1 tcube.ipcress absorption rosseland 19000
opacity: 2 model scattering 1 1 1

If analytic and file opacities are used in the same problem, the group boundaries must be input by
the user and they must match those in the IPCRESS opacity file, or Milagro will fire an assertion
and abort. If only file opacities are used, the group boundaries will be read from the file, i.e., the
num groups and group bounds entries are unnecessary.

5.4. Equation-of-State Definition

At this time, only analytic expressions of a constant form or polynomial form (a+bT c) are available
for the specific heat [Jerks/g/keV], as shown in the following example:

num_eos: 1

c analytic_form_of_eos (Jerks/g/keV): (a + bT^c)
c analytic eos models: constant or polynomial
eos: 1 analytic constant 0.1

5.5. Material Definition

In the material block, the material is defined with a material ID, descriptive name, density [g/cc],
initial temperature [keV], absorption opacity ID, scattering opacity ID, and EOS ID. The following
is an example:

c mat_id, mat_descr, dens(g/cc), init_temp(keV), abs_id, scat_id, eos_id
mat: 1 mat1 1.0 1.0 1 2 1
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6. Verification

Verification is an essential part of introducing new code capabilities. Verification is not as much
about code correctness itself as it is about actually knowing that the code is correct.

Milagro’s multigroup frequency capability is built with rigorously tested elemental components:
Planckian integrators, Planckian samplers, cdf sampling, binary searches for frequency groups,
opacity builders and accessors, energy calculations, particle packing, particle tracking, input pars-
ing, etc. These components are tested during development and nightly in the automated regression
testing [17].

At the executable-code level, the multigroup frequency capability must meet Milagro’s normal
physics and robustness tests. At this level, such things as restarting, parallelism, and energy
conservation are tested. Finally, at the executable-code level, we test Milagro against analytic
benchmarks.

6.1. Multigroup Problems That Are Degenerately Gray

As with gray Milagro, multigroup Milagro’s regression tests double as high-level tests of low-level
components or low-level physics [17]. The regression tests fall into the following categories:

• steady-state, infinite, homogeneous medium

• streaming in a void

• problems with only one source-type of particles

– all surface source particles

– all volume emission particles

– all census particles

• restarting

– same parallel topology

– replication to decomposition

– decomposition to replication

• short versions of analytic benchmarks

These problems are run with the new multigroup executable of Milagro, but the group structure
and opacity data are set to emulate a gray calculation. Each group has exactly the same opacity.
These problems were run with three groups with the following group boundaries: 0.0, 0.2, 3.0,
100.0 keV. These boundaries were chosen to give very nearly a unity value of the integral of the
normalized Planckian for a temperature of 1 keV.

The results of these test problems generally are not identical to the gray results because of the extra
random numbers required to sample the frequency group. (The exception is the test problem with all
census particles.) However, they all give results that are statistically equivalent to the corresponding
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gray results. We expect this statistical equivalence because the degenerate multigroup case is
essentially the gray case with a different set of random numbers.

In addition to the “short versions of analytic benchmarks” that are run nightly in the regression
tests, “long” versions are run in the same mode of setting the multigroup parameters to emulate
the gray case. One of the “long” problems is the Marshak-2A, which is a less-diffuse variant of the
Marshak-2B test problem [18]. Figure 4 shows the Milagro results for the Marshak-2A test problem
for both gray and degenerate multigroup cases. As expected, the results agree with each other.
The agreement is a zeroth order verification of the multigroup coding.
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FIG. 4: Zeroth order verification of the multigroup capability in the Milagro IMC code.

6.2. Su and Olson Non-Grey Benchmarks

Su and Olson have derived an analytic, multigroup benchmark for non-equilibrium thermal radiative
transfer [19]. It is similar to their gray benchmark [20], except that it considers a multigroup picket
fence model for its opacity. For a given dν, the picket fence model has two opacities, of specified
fractions, that are independent of temperature and frequency. If a code can model an underlying
flat spectral shape, it can run the Su/Olson problem with just 2 groups. Milagro, however, has
assumptions of underlying Planckian spectra, so, to run the Su/Olson problem, it requires several
groups to make the Planckian change negligible over each group.

The Su/Olson Non-Grey benchmark has two non-grey cases: Case B has one opacity 10 times the
other, and Case C has one opacity 100 times the other (Case A is a gray case). The fraction of
each opacity in both cases is 50%.
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6.2.1. A Caveat. We must admit that Milagro cheats on the Su/Olson problems because it ana-
lytically updates the material temperature whenever the specific heat is proportional to T 3 [21].
We implemented the analytic update under pressure from colleagues who were analyzing methods
designed solely for the linear radiative transfer equations, a set of equations in which the specific
heat’s T 3 analytically cancels out. No doubt, we are violating the spirit of verification by running
special code for certain circumstances. However, from a practical standpoint, we will continue to
use the analytic update because it makes our calculations of Su/Olson problems faster. Besides,
we hope to extend this analytic temperature update to data tables that have a fitted interpolation
shape between points.

6.2.2. Convergence with Number of Groups. For the Case B results at ct = 10, we considered a
frequency range of 0 to 100 keV divided evenly into uniform groups. We show the convergence of
Milagro’s results to the analytic solution by successive doubling of the number of groups. Figures 5
and 6 show the convergence of the material energy and radiation energy, respectively, with increasing
number of groups. Adequate resolution appeared to come at 64 groups. The order of convergence
is not of particular interest here, because it merely represents the dynamics for which the in-group
Planckian changes become negligible.
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FIG. 5: Convergence of Milagro’s material energy with increasing groups (and resolution of the
Planckian) for the Su/Olson nongrey benchmark Case B at time ct = 10.

Case C of the Su/Olson analytic benchmark has a picket-fence opacity model where one opacity is
100 times the other (as opposed to Case B, where one is only 10 times the other). Case C requires
better frequency resolution than Case B, because the greater changes in opacity make the model
more sensitive to the in-group Planckian changes. As shown for the material energy in Fig. 7,
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FIG. 6: Convergence of Milagro’s radiation energy with increasing groups (and resolution of the
Planckian) for the Su/Olson nongrey benchmark Case B at time ct = 10.

Case C required at least 128 uniform groups over the range 0 to 102.4. (Note that, for Case C, we
changed the upper limit to a value that is more easily halved.)

6.2.3. Results at all time edits: Cases B and C. Figures 8 and 9 have the multigroup Milagro IMC
results for all time edits of Case B of the Su/Olson nongrey analytic benchmark.

Figures 10 and 11 shows the multigroup Milagro IMC results for Su/Olson’s nongrey Case C, which
has a picket fence opacity model that is ten times more disparate than Case B.

6.2.4. Convergence with ∆x and ∆t at Early Time. The lack of agreement at early times between
the Milagro multigroup IMC results and the Su/Olson analytical solution is obvious in Figures 8
and 10. In general, these errors are due to the numerical method, the algorithm, and modeling
specifics. For timesteps that are too large, the Fleck and Cummings method violates the maximum
principle theorem and produces nonphysical—but not unstable—results, especially at early time [22,
23]. Also at early time is the extra modeling complication of a step-function source. In the way
of algorithms, Milagro’s use of time-explicit material properties usually affects the accuracy of its
transport solution. However, for the Su/Olson problems, the T 3

n in the specific heat cancels out
in the Fleck factor and results in temperature–independent IMC opacities (effective scattering and
effective absorption).

We refined the timestep in the Milagro calculations of the Su/Olson non-grey Case B benchmark
until apparent convergence; then we refined the uniform cell width. The plot of the material energy
at the first time edit of ct = 0.1 is shown in Fig. 12. The relative errors compared to the analytic
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FIG. 7: Convergence of Milagro’s material energy with increasing groups (and resolution of the
Planckian) for the Su/Olson nongrey benchmark Case C at time ct = 10.

solutions are in Fig. 13. We see that the order of both the spatial and temporal error is about 1/2.

Production versions of these calculations would benefit from a dynamic timestep control (initially
small, fractional increase, maximum) and zoning that focused refinement around the source’s step
function at early time.

6.2.5. Convergence with Number of Particles. In any traditional linear, unbiased Monte Carlo
calculation, the Central Limit Theorem implies that the statistical error (precision, not accuracy)
decreases with the number of particles according to an inverse root law,

σ ∼ 1√
N

. (9)

This law is true for any of the IMC tallies made during a timestep.

The Central Limit Theorem holds for the IMC tallies within a given timestep because IMC looks
like traditional, linear Monte Carlo within a timestep. However, the overall IMC calculation is
nonlinear, so the errors are much more complicated. After a timestep, the statistical results are
manipulated by deterministic operations in order to get updated material temperatures. New
material properties are calculated or looked-up in data tables with the new temperatures. Thus,
the initial conditions of all subsequent timesteps potentially have both statistical and accuracy
errors. Propagation of error may occur when statistics are built upon statistics. Bias may occur
when deterministic operations are performed on statistical results.
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FIG. 8: Milagro multigroup IMC material energies for the Su/Olson nongrey Case B analytic
benchmark.

How many particles is enough? The required number of particles in an IMC calculation depends
on methods and algorithms. Time-implicit methods and non-analog estimators reduce the number
of required particles. Model parameters and the interaction of parameters also affect the number
of required particles. Over an IMC timestep, estimates of the energy exchange are constructed
by discretizing phase space into bins and accumulating IMC particle tallies during the timestep.
Generally speaking, increasing the phase space or, similarly, dividing the same phase space into
more bins, requires correspondingly more particles to maintain the same statistical noise per bin.
So, for wave propagation problems such as the Su/Olson problems, more particles are required as
the energy flows into a larger spatial domain.

Let us consider the IMC errors beyond early time, where the Fleck and Cummings IMC method is
well-behaved [22]. Successive IMC timesteps are dependent because of the time-dependent physics;
the result of one IMC timestep determines the initial condition for the next IMC timestep. Due to
these dependencies, the statistical noise in one timestep may propagate to the next timestep and
possibly build up, especially if the noise swamps the dynamic behavior of the physics. However,
propagation of error will not be a problem as long as there are enough particles to capture the
dynamics each timestep. Whether a number of particles is enough or not depends on the properties
of the modeled system. For example, IMC is noisy and inefficient in very diffuse situations.

Dependency implies correlation. A positive correlation between successive IMC timesteps means
that, if a result is too large statistically during one timestep, it will likely be too large statistically
during the next timestep. Whether correlations affect the propagation of error depends on the
number of particles, the size of the timestep, the accuracy errors, and relative time-length scales of
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Milagro Multigroup IMC on Su/Olson Nongrey Benchmark
64 Groups, Case B picket-fence opacity: σ
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FIG. 9: Milagro multigroup IMC total radiation energies for the Su/Olson nongrey Case B analytic
benchmark.

the physics and statistics.

Bias is a term that describes a departure of the expected value of a Monte Carlo result from the
true value. One cause of bias in an otherwise unbiased Monte Carlo calculation is deterministic
operations on random variables. For example, there is the following Monte Carlo truism: “the
ratio of averages is not equivalent to the average of the ratios.” In the IMC method, the material
temperature update at the end of each cycle involves a deterministic operation on the Monte Carlo
estimate of the net energy deposition from the radiation to the material. Having enough particles
reduces any such bias to a negligible amount.

Consider Milagro IMC on the Su/Olson nongrey Case C problem. We find that the statistical noise
may manifest itself into an apparent negative bias in the material temperature. See Fig. 14 for the
difference between IMC calculations using a constant 104 particles and a linear ramp-up from 104

to 106 particles. We believe this apparent bias is due to several things. First, one of the opacities
is large enough to produce a diffusive situation, which results in relatively larger statistical noise.
Second, the emission, aT 4, when T is particularly noisy, will tend to be relatively larger than
statistically expected: given a 10% deviation about unity, 1.04 is unity and (1.0 + 0.1)4 is farther
away from unity than (1.0− 0.1)4. Third, the timestep we use, c∆t = 0.1, is sufficiently small such
that, at late time, only about 3% of the radiation is absorbed and re-emitted. The rest stays alive
as census particles between timesteps. Therefore, the higher biased radiation energy will not be
counteracted by deposition, ∆E, when the material temperature is updated analytically:

Tn+1 =
(

4∆E

cv0

+ T 4
n

) 1
4

. (10)



To Distribution
CCS–4:02-13(U) (LA-UR-02-3213)

–22– May 28, 2002

0.1 1 10 100

x, mfp

10
-4

10
-3

10
-2

10
-1

10
0

m
at

er
ia

l e
ne

rg
y,

 J
er

ks
Analytical Solution
Milagro Multigroup IMC

Milagro Multigroup IMC on Su/Olson Nongrey Benchmark
128 Groups, Case C picket-fence opacity: σ

2
 = 100σ

1
 = 200/101, c∆t = 0.1 cm

ct = 0.1

ct = 0.3

ct = 1.0
ct = 100

ct = 3.0

ct = 10.0

ct = 30.0

Difference due to the IMC’s
reflecting b.c. at 80cm.

10
4
 + 10

4
ct particles

FIG. 10: Milagro multigroup IMC material energies for the Su/Olson nongrey Case C analytic
benchmark.

Note that if we had updated the temperature in the normal fashion, where we assume that the
specific heat is constant and evaluated at the beginning of the timestep, the bias in the temperature
update,

Tn+1 = Tn +
∆E

cv0T
3
n

, (11)

could be much worse than the analytic temperature update. It could produce nonphysically large
temperatures because it gives more weight to positive energy depositions (increasing T ) than neg-
ative energy depositions (decreasing T ).

Consider, in Fig. 15, the time-plot of the energies for the calculation with 104 particles and the
calculation with a linear ramp-up from 104 to 106 particles. We know that the radiation and
material should be equilibrating in this problem, but the calculation with a constant 104 particles
stagnates and actually deviates from equilibrium. The “snake-like” behavior indicates the presence
of positive correlation between timesteps and that, therefore, the actual statistical error is much
larger than would be suggested by values from successive timesteps.

7. Package Dependencies

Milagro-3 0 0 depends on the following Draco packages:
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FIG. 11: Milagro multigroup IMC total radiation energies for the Su/Olson nongrey Case C analytic
benchmark.

Package Release
ds++ 1 6 0
stdheaders 1 2 0
c4 2 0 0
traits 1 4 0
rng 1 6 0
meshReaders 1 4 0
cdi 1 2 0
viz 1 3 0
RTT Format Reader 1 3 0
cdi analytic 1 0 0
cdi gandolf 1 2 0
mc 3 0 0
imc 3 0 0

8. Conclusion

We have released Milagro-3 0 0, the parallel, multi-dimensional, multi-geometry, stand-alone Im-
plicit Monte Carlo (IMC) code for thermal radiative transfer. Milagro-3 0 0 showcases a new
multigroup frequency treatment. We have described the assumptions that we took in designing
and coding the multigroup capability. We also describe the new C++ techniques we devised that
allow Milagro to have both multigroup and gray capabilities without sacrificing efficiency and safety
and without introducing redundant code.
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FIG. 12: Early-time convergence of the material energy in Milagro for the Su/Olson non-grey Case
B benchmark.

Milagro’s new multigroup capability has been verified with a set of degenerate test problems and
with the Su/Olson nongrey transport benchmarks. We performed a rudimentary space/time con-
vergence study on the Milagro multigroup results at early time for the Su/Olson Case C problem.
We conclude with a discussion on how the number of particles affects error propagation in an IMC
calculation.

9. Contacts

Please contact one of us, or our group leader,

• Tom Evans, tme@lanl.gov, 665-3677,

• Todd Urbatsch, tmonster@lanl.gov, 667-3513,

• Mike Buksas, mwbuksas@lanl.gov, 667-7580,

• Gordon Olson, Group Leader, glo@lanl.gov, 667-8105,

to comment on the Milagro IMC code or to request new capabilities.
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